Which Competing Hydraulic Design Model is Right for Your Municipality?

> Friday, October 16, 2015 David N. Perry, PE

Background

The WILLIAM STATES LEE COLLEGE of ENGINEERING

SWMM

Storm Water Management Model
Developed by EPA
Planning, analysis and design for stormwater

Charlotte – Careful Review of Hydraulic Models

Urban Watersheds

Illustrating Property Impacts

Image source: xpsolutions Tutorial 17: 2D Urban Flooding

Multiple Hydraulic Modeling Software Options

Storm CAD® Storm Sewer Design and Modeling Autodesk[®] Storm & Sanitary Analysis

Hydrologic Engineering Center

Wave Models

- Dynamic Wave (St. Venant's Equation)
- Kinematic Wave (Simplification)

Dynamic Wave Equation

Image Source: www.redbubble.com

Full Dynamic Wave (Saint Venant)

$$\begin{split} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv &= -g \frac{\partial h}{\partial x} - bu, \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu &= -g \frac{\partial h}{\partial y} - bv, \\ \frac{\partial h}{\partial t} &= -\frac{\partial}{\partial x} \Big(u \left(H + h \right) \Big) - \frac{\partial}{\partial y} \Big(v \left(H + h \right) \Big) \end{split}$$

• Complete representation of momentum and changes in downstream and side-to-side movement, as well as conservation of mass with flow and cross-section.

Kinematic Wave

 $\frac{1}{A}\frac{\partial}{\partial}\frac{Q}{t} + \frac{1}{A}\frac{\partial}{\partial}\frac{Q^2}{x}\left(\frac{Q^2}{A}\right) + g\frac{\partial}{\partial}\frac{y}{x} - g(S_o - S_f) \neq 0$

FIGURE 14.7

The St. Venant equation for momentum can be simplified by dropping terms as shown (redrawn from Chow et al. 1988).

Image Source: Chapra "Surface Water-Quality Modeling" 1997

 Simplified dynamic wave – gravitational momentum versus friction force.

Criterion For Accurate Kinematic Model

Ponce et al. (1978) criterion for kinematic:

• $\tau^* = T S_0 F_n (g/y_0)^{\frac{1}{2}} > 171$

- Variables:
 - T = the wave period of the sinusoidal perturbation to the steady uniform flow
 - $-S_0 =$ the channel bottom slope
 - $-F_n =$ the steady uniform Froude number
 - $-y_0 =$ the uniform flow depth

Test Kinematic Criterion on Typical Charlotte Urban Watershed

Test Kinematic Criterion on Typical Charlotte Urban Watershed

Project	Channel slope at	10-yr storm		Length of	
name	outfall (first 500 feet)	peak flow (cfs)	T(c) (hrs)	system (ft)	Froude
Parkwood	0.008	1424	3.23	6800	0.09
Lyon Court	0.0077	922	3.25	6500	0.03
Water Oak	0.009	224.5	3.66	4500	0.3
Cutchin	0.0254	472.6	3.52	4500	0.64
Averages	0.0125	761	3.42	5575	0.27

Ponce et al. (1978) criterion for kinematic:

• $\tau^* = T S_0 F_n (g/y_0)^{\frac{1}{2}} = 1,990 > 171$

Difference in Practice?

Image Source: Public Domain/R.R. Cratty

Coastal Communities Using Dynamic Wave?

Hilton Head Island, SC

Thanks to Jeff Buckalew, PE, Town Engineer, and Brian McIlwee, PE, Stormwater Administrator

Wilmington, NC

Thanks to Robert Gordon, PE, Plan Review Engineer

Virginia Beach, VA

Thanks to Greg Johnson, PE, Stormwater Technical Services Engineer

Rocky Mount, NC

Thanks to Donald Perry, PE, Stormwater Engineer

Asheville, NC

Thanks to McCray Coates, PE, Stormwater Services Manager, and Marcus Barksdale, PE, Stormwater Services Coordinator

Key Points

Dynamic wave equation-based hydraulic models are important to specify when:

- Slopes are less than 0.5%
- There are potentially significant backwater effects such as tidal forces
- If 2D analysis of overland flow is needed
- For channel analysis, most engineers are using software that uses the dynamic wave equation

What Should Municipalities Ask?

Image Source: www.thepajamacompany.com

Which Competing Hydraulic Design Model is Right for Your Municipality?

> David N. Perry, PE dperry@wkdickson.com (704) 227-3408

